Correction to: Solutions of Complex Fermat-Type Partial Difference and Differential-Difference Equations
نویسندگان
چکیده
منابع مشابه
ENTIRE SOLUTIONS OF FERMAT TYPE q-DIFFERENCE DIFFERENTIAL EQUATIONS
In this article, we describe the finite-order transcendental entire solutions of Fermat type q-difference and q-difference differential equations. In addition, we investigate the similarities and other properties among those solutions.
متن کاملOn meromorphic solutions of certain type of difference equations
We mainly discuss the existence of meromorphic (entire) solutions of certain type of non-linear difference equation of the form: $f(z)^m+P(z)f(z+c)^n=Q(z)$, which is a supplement of previous results in [K. Liu, L. Z. Yang and X. L. Liu, Existence of entire solutions of nonlinear difference equations, Czechoslovak Math. J. 61 (2011), no. 2, 565--576, and X. G. Qi...
متن کاملFinite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
متن کاملAlmost Automorphic Mild Solutions to Fractional Partial Difference-differential Equations
We study existence and uniqueness of almost automorphic solutions for nonlinear partial difference-differential equations modeled in abstract form as (∗) ∆u(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z, for 0 < α ≤ 1 where A is the generator of a C0-semigroup defined on a Banach space X, ∆ denote fractional difference in Weyl-like sense and f satisfies Lipchitz conditions of global and local type. We intr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mediterranean Journal of Mathematics
سال: 2019
ISSN: 1660-5446,1660-5454
DOI: 10.1007/s00009-019-1438-3