Correlation functions in Schwarzian liquid
نویسندگان
چکیده
منابع مشابه
Hydrodynamic Correlation Functions in Nematic Liquid Crystals
Résumé. — L'objet du présent article consiste en un réexamen du résultat suivant récemment obtenu par Forster : dans le cas des cristaux liquides nématiques, il n'est pas possible de déterminer de manière complète, à partir de la matrice hydrodynamique, les amplitudes liées à tous les modes diffusifs. Nous montrons qu'à partir des lois de symétrie d'inversion spatiale et d'inversion de temps, c...
متن کاملThe Schwarzian Derivative and Schlicht Functions
It is customary to formulate the inequalities of the "Verzerrungssatz" type for analytic functions w—f(z), schlicht in the unit circle, with reference to a specific normalization. The two normalizations mainly used are: (a) f(z) is finite in \z\ < 1 , /(O) = 0 , /'(O) = 1; (b) ƒ(z) has a pole at 2 = 0 with the residue 1. If we want to obtain inequalities which are independent of any particular ...
متن کاملHadronic correlation functions in the interacting instanton liquid.
In this paper we study hadronic correlation functions in the interacting instanton liquid model, both at zero and nonzero temperature T . At zero T we investigate the dependence of the correlators on the instanton ensemble, in particular the effect of the fermionic determinant. We demonstrate that quark-induced correlations between instantons are important, especially in the repulsive η′ and δ-...
متن کاملThe Norm Estimates of Pre-Schwarzian Derivatives of Spirallike Functions and Uniformly Convex $alpha$-spirallike Functions
For a constant $alphain left(-frac{pi}{2},frac{pi}{2}right)$, we definea subclass of the spirallike functions, $SP_{p}(alpha)$, the setof all functions $fin mathcal{A}$[releft{e^{-ialpha}frac{zf'(z)}{f(z)}right}geqleft|frac{zf'(z)}{f(z)}-1right|.]In the present paper, we shall give the estimate of the norm of the pre-Schwarzian derivative $mathrm{T}...
متن کاملErgodic Properties of Sub-hyperbolic Functions with Polynomial Schwarzian Derivative
The ergodic theory and geometry of the Julia set of meromorphic functions on the complex plane with polynomial Schwarzian derivative is investigated under the condition that the forward trajectory of asymptotic values in the Julia set is bounded and the map f restricted to its closure is expanding, the property refered to as subexpanding. We first show the existence, uniqueness, conservativity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2019
ISSN: 2470-0010,2470-0029
DOI: 10.1103/physrevd.99.066001