Correlation functions of complex matrix models
نویسندگان
چکیده
منابع مشابه
Correlation Functions of Complex Matrix Models
For a restricted class of potentials (harmonic+Gaussian potentials), we express the resolvent integral for the correlation functions of simple traces of powers of complex matrices of size N , in term of a determinant; this determinant is function of four kernels constructed from the orthogonal polynomials corresponding to the potential and from their Cauchy transform. The correlation functions ...
متن کاملCorrelation functions of eigenvalues of multi-matrix models, and the limit of a time dependent matrix
Abstract: The universality of correlation functions of eigenvalues of large random matrices has been observed in various physical systems, and proved in some particular cases, as the hermitian one-matrix model with polynomial potential. Here, we consider the more difficult case of a unidimensional chain of matrices with first neighbour couplings and polynomial potentials. An asymptotic expressi...
متن کاملComplex Geometry of Matrix Models
The paper contains some new results and a review of recent achievements, concerning the multisupport solutions to matrix models. In the leading order of the ’t Hooft expansion for matrix integral, these solutions are described by quasiclassical or generalized Whitham hierarchies and are directly related to the superpotentials of four-dimensional N = 1 SUSY gauge theories. We study the derivativ...
متن کاملPfaffian Expressions for Random Matrix Correlation Functions
It is well known that Pfaffian formulas for eigenvalue correlations are useful in the analysis of real and quaternion random matrices. Moreover the parametric correlations in the crossover to complex random matrices are evaluated in the forms of Pfaffians. In this article, we review the formulations and applications of Pfaffian formulas. For that purpose, we first present the general Pfaffian e...
متن کاملMicroscopic universality of complex matrix model correlation functions at weak non-Hermiticity
The microscopic correlation functions of non-chiral random matrix models with complex eigenvalues are analyzed for a wide class of non-Gaussian measures. In the large-N limit of weak non-Hermiticity, where N is the size of the complex matrices, we can prove that all k-point correlation functions including an arbitrary number of Dirac mass terms are universal close to the origin. To this aim we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 2006
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/39/28/s01