Corrigendum to “A Matrix Model for Random Nilpotent Groups”

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for computing with nilpotent matrix groups over infinite domains

We develop methods for computing with matrix groups defined over a range of infinite domains, and apply those methods to the design of algorithms for nilpotent groups. In particular, we provide a practical nilpotency testing algorithm for matrix groups over an infinite field. We also provide algorithms to answer a number of structural questions for a nilpotent matrix group.The main algorithms h...

متن کامل

Connected transversals to nilpotent groups

We prove that a finite group with nilpotent subgroup H and H-connected transversals is solvable. The proof depends on the classification of finite simple groups.

متن کامل

Nilpotent Groups

The articles [2], [3], [4], [6], [7], [5], [8], [9], [10], and [1] provide the notation and terminology for this paper. For simplicity, we use the following convention: x is a set, G is a group, A, B, H, H1, H2 are subgroups of G, a, b, c are elements of G, F is a finite sequence of elements of the carrier of G, and i, j are elements of N. One can prove the following propositions: (1) ab = a · ...

متن کامل

NILPOTENT GRAPHS OF MATRIX ALGEBRAS

Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2017

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnx185