Cost-Constrained feature selection in binary classification: adaptations for greedy forward selection and genetic algorithms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection Methods: Genetic Algorithms vs. Greedy-like Search

This paper presents a comparison between two feature selection methods, the Importance Score (IS) which is based on a greedy-like search and a genetic algorithm-based (GA) method, in order to better understand their strengths and limitations and their area of application. The results of our experiments show a very strong relation between the nature of the data and the behavior of both systems. ...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

Genetic Algorithms for Feature Selection and Weighting

Automated techniques to optimise the retrieval of relevant cases in a CBR system are desirable as a way to reduce the expensive knowledge acquisition phase. This paper concentrates on feature selection methods that assist in indexing the case-base, and feature weighting methods that improve the similarity-based selection of relevant cases. Two main types of method are presented: filter methods ...

متن کامل

Protein fold Classification with Genetic Algorithms and Feature Selection

Protein fold classification is a key step to predicting protein tertiary structures. This paper proposes a novel approach based on genetic algorithms and feature selection to classifying protein folds. Our dataset is divided into a training dataset and a test dataset. Each individual for the genetic algorithms represents a selection function of the feature vectors of the training dataset. A sup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Bioinformatics

سال: 2020

ISSN: 1471-2105

DOI: 10.1186/s12859-020-3361-9