Counterexamples to Okounkov’s log-concavity conjecture

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Log-concavity Conjecture for the Duistermaat-heckman Measure Revisited

Karshon constructed the first counterexample to the log-concavity conjecture for the Duistermaat-Heckman measure: a Hamiltonian six manifold whose fixed points set is the disjoint union of two copies of T. In this article, for any closed symplectic four manifold N with b > 1, we show that there is a Hamiltonian circle manifold M fibred over N such that its DuistermaatHeckman function is not log...

متن کامل

A Computer Proof of Moll’s Log-Concavity Conjecture

In his study [7] on quartic integrals, Moll met a specialized family of Jacobi polynomials. Moll conjectured that the corresponding coefficient sequences are log-concave. In this paper we settle Moll’s conjecture by a non-trivial usage of computer algebra.

متن کامل

Counterexamples to the uniformity conjecture

The Exact Geometric Computing approach requires a zero test for numbers which are built up using standard operations starting with the natural numbers. The uniformity conjecture, part of an attempt to solve this problem, postulates a simple linear relationship between the syntactic length of expressions built up from the natural numbers using field operations, radicals and exponentials and loga...

متن کامل

Counterexamples to Kalai's conjecture C

1 The First Counterexample Let ρ be a quantum state on the space (C) of n qudits (d-dimensional quantum systems). Denote by ρS the reduced state of ρ onto some subset S of the qudits. We partition S further into two nonempty subsets of qudits A and A := S\A (thus S must contain at least two qudits). Denote by Sep(A) the convex set of quantum states which are bipartite separable on S across the ...

متن کامل

New Counterexamples to Knaster’s Conjecture

Given a continuous map f : Sn−1 → Rm and n − m + 1 points p1, . . . , pn−m+1 ∈ Sn−1, does there exist a rotation % ∈ SO(n) such that f(%(p1)) = . . . = f(%(pn−m+1))? We give a negative answer to this question for m = 1 if n ∈ {61, 63, 65} or n ≥ 67 and for m = 2 if n ≥ 5.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Compositio Mathematica

سال: 2007

ISSN: 0010-437X,1570-5846

DOI: 10.1112/s0010437x07003090