Counting Lattice Paths via a New Cycle Lemma

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Lattice Paths via a New Cycle Lemma

Let α, β,m, n be positive integers. Fix a line L : y = αx + β, and a lattice point Q = (m,n) on L. It is well known that the number of lattice paths from the origin to Q which touches L only at Q is given by β m+ n “m+ n m ” . We extend the above formula in various ways, in particular, we consider the case when α and β are arbitrary positive reals. The key ingredient of our proof is a new varia...

متن کامل

Counting Lattice Paths

Counting lattice paths Maciej Dziemiańczuk A lattice path is a finite sequence of points p0, p1, . . . , pn in Z × Z, and a step of the path is the difference between two of its consecutive points, i.e., pi−pi−1. In this thesis, we consider lattice paths running between two fixed points and for which the set of allowable steps contains the vertical step (0,−1) and some number (possibly infinite...

متن کامل

Counting Paths in Young’s Lattice

Young’s lattice is the lattice of partitions of integers, ordered by inclusion of diagrams. Standard Young tableaux can be represented as paths in Young’s lattice that go up by one square at each step, and more general paths in Young’s lattice correspond to more general kinds of tableaux. Using the theory of symmetric functions, in particular Pieri’s rule for multiplying a Schur function by a c...

متن کامل

Generalizing Delannoy Numbers via Counting Weighted Lattice Paths

The aim of this paper is to introduce a generalization of Delannoy numbers. The standard Delannoy numbers count lattice paths from (0, 0) to (n, k) consisting of horizontal (1, 0), vertical (0, 1), and diagonal (1, 1) steps called segments. We assign weights to the segments of the lattice paths, and we sum weights of all lattice paths from any (a, b) to (n, k). Generating functions for the gene...

متن کامل

A Simple Counting Formula for Lattice Paths

Let α,β ,x,y be positive integers. Fix a line L : Y = αX + β , and a lattice point Q(x,y) on L. It is well known that the number of lattice paths from the origin to Q which touches L only at Q is given by β x + y ( x + y x )

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2012

ISSN: 0895-4801,1095-7146

DOI: 10.1137/100796431