Coupled Clustering Ensemble by Exploring Data Interdependence
نویسندگان
چکیده
منابع مشابه
Clustering cancer gene expression data by projective clustering ensemble
Gene expression data analysis has paramount implications for gene treatments, cancer diagnosis and other domains. Clustering is an important and promising tool to analyze gene expression data. Gene expression data is often characterized by a large amount of genes but with limited samples, thus various projective clustering techniques and ensemble techniques have been suggested to combat with th...
متن کاملA new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble
An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...
متن کاملClustering Categorical Data by Utilizing the Correlated-Force Ensemble
We explore in this paper a novel clustering algorithm, named CORE (standing for CORrelated-Force Ensemble), for categorical data. In general, it is more difficult to perform clustering on categorical data than on numerical data due to the absence of the ordered property in the former. Though several clustering algorithms which concentrate on categorical date were proposed, acquiring the desirab...
متن کاملThe Projective Clustering Ensemble Problem for Advanced Data Clustering
After more than five decades, a huge number of models and algorithms have been developed for data clustering. While most attention has been devoted to data types, algorithmic features, and application targets, in the last years there has also been an increasing interest in developing advanced dataclustering tools. In this respect, projective clustering and clustering ensembles represent two of ...
متن کاملClustering Stream Data by Exploring the Evolution of Density Mountain
Stream clustering is a fundamental problem in many streaming data analysis applications. Comparing to classical batchmode clustering, there are two key challenges in stream clustering: (i) Given that input data are changing continuously, how to incrementally update clustering results efficiently? (ii) Given that clusters continuously evolve with the evolution of data, how to capture the cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Knowledge Discovery from Data
سال: 2018
ISSN: 1556-4681,1556-472X
DOI: 10.1145/3230967