Covariant differential calculus on the quantum hyperplane

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Affine Transformation Group and Covariant Differential Calculus

We discuss quantum deformation of the affine transformation group and its Lie algebra. It is shown that the quantum algebra has a noncocommutative Hopf algebra structure, simple realizations and quantum tensor operators. The deformation of the group is achieved by using the adjoint representation. The elements of quantum matrix form a Hopf algebra. Furthermore, we construct a differential calcu...

متن کامل

Differential Calculus on Quantum Spheres

We study covariant differential calculus on the quantum spheres S q . A classification result for covariant first order differential ∗ calculi is proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including a particular first order calculus obtained by factorization, higher orde...

متن کامل

The Differential Calculus on Quantum Linear Groups

The non-commutative differential calculus on the quantum groups SL q (N) is constructed. The quantum external algebra proposed contains the same number of generators as in the classical case. The exterior derivative defined in the constructive way obeys the modified version of the Leibnitz rules.

متن کامل

3 v 1 1 9 N ov 1 99 2 GL q ( N ) - Covariant Quantum Algebras and Covariant Differential Calculus ∗

We consider GL q (N)-covariant quantum algebras with generators satisfying quadratic polynomial relations. We show that, up to some inessential arbitrari-ness, there are only two kinds of such quantum algebras, namely, the algebras with q-deformed commutation and q-deformed anticommutation relations. The connection with the bicovariant differential calculus on the linear quantum groups is dissc...

متن کامل

Braided differential calculus and quantum Schubert calculus

We provide a new realization of the quantum cohomology ring of a flag variety as a certain commutative subalgebra in the cross product of the Nichols-Woronowicz algebras associated to a certain Yetter-Drinfeld module over the Weyl group. We also give a generalization of some recent results by Y.Bazlov to the case of the Grothendieck ring of a flag variety of classical type. Résumé. Nous fournis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Physics B - Proceedings Supplements

سال: 1991

ISSN: 0920-5632

DOI: 10.1016/0920-5632(91)90143-3