Covering cycles in sparse graphs

نویسندگان

چکیده

Let be an integer. Kouider and Lonc proved that the vertex set of every graph G with vertices minimum degree at least can covered by cycles. Our main result states for , same conclusion holds graphs are sparse in sense In particular, this allows us to determine local resilience random pseudorandom respect having a cover fixed number The proof uses version absorbing method expander graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonian Cycles in Sparse Graphs

Hamiltonian Cycles in Sparse Graphs Alexander Hertel Master of Science Graduate Department of Computer Science University of Toronto 2004 The subject of this thesis is the Hamiltonian Cycle problem, which is of interest in many areas including graph theory, algorithm design, and computational complexity. Named after the famous Irish mathematician Sir William Rowan Hamilton, a Hamiltonian Cycle ...

متن کامل

On covering expander graphs by hamilton cycles

The problem of packing Hamilton cycles in random and pseudorandom graphs has been studied extensively. In this paper, we look at the dual question of covering all edges of a graph by Hamilton cycles and prove that if a graph with maximum degree ∆ satisfies some basic expansion properties and contains a family of (1−o(1))∆/2 edge disjoint Hamilton cycles, then there also exists a covering of its...

متن کامل

Packing, Counting and Covering Hamilton cycles in random directed graphs

A Hamilton cycle in a digraph is a cycle passes through all the vertices, where all the arcs are oriented in the same direction. The problem of finding Hamilton cycles in directed graphs is well studied and is known to be hard. One of the main reasons for this, is that there is no general tool for finding Hamilton cycles in directed graphs comparable to the so called Posá ‘rotationextension’ te...

متن کامل

On cycles in intersection graphs of rings

‎Let $R$ be a commutative ring with non-zero identity. ‎We describe all $C_3$‎- ‎and $C_4$-free intersection graph of non-trivial ideals of $R$ as well as $C_n$-free intersection graph when $R$ is a reduced ring. ‎Also, ‎we shall describe all complete, ‎regular and $n$-claw-free intersection graphs. ‎Finally, ‎we shall prove that almost all Artin rings $R$ have Hamiltonian intersection graphs. ...

متن کامل

Optimal Packings of Hamilton Cycles in Sparse Random Graphs

We prove that there exists a positive constant ε such that if log n/n ≤ p ≤ n−1+ε, then asymptotically almost surely the random graph G ∼ G(n, p) contains a collection of bδ(G)/2c edge-disjoint Hamilton cycles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Random Structures and Algorithms

سال: 2021

ISSN: ['1042-9832', '1098-2418']

DOI: https://doi.org/10.1002/rsa.21045