Crack Severity Classification from Timber Cross-Sectional Images Using Convolutional Neural Network

نویسندگان

چکیده

Cedar and cypress used for wooden construction have high moisture content after harvesting. To be as building materials, they must undergo high-temperature drying. However, this process causes internal cracks that are invisible on the outer surface. These defects serious because reduce strength of timber, i.e., buckling joint durability. Therefore, severity should evaluated. A square timber was cut at an arbitrary position assessed based length, thickness, shape in cross-section; however, is time-consuming labor-intensive. we a convolutional neural network (CNN) to automatically evaluate from cross-sectional images. Previously, silver-painted images cross-sections so easier observe; task burdensome. Hence, study, attempted classify crack using ResNet (Residual Neural Network) unpainted First, ResNet50 employed trained with supervised data level. The classification accuracy then evaluated test (not training) reached 86.67%. In conclusion, confirmed proposed CNN could behalf humans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Breast Cancer Classification in Histopathological Images using Convolutional Neural Network

Computer based analysis is one of the suggested means that can assist oncologists in the detection and diagnosis of breast cancer. On the other hand, deep learning has been promoted as one of the hottest research directions very recently in the general imaging literature, thanks to its high capability in detection and recognition tasks. Yet, it has not been adequately suited to the problem of b...

متن کامل

3D model classification using convolutional neural network

Our goal is to classify 3D models directly using convolutional neural network. Most of existing approaches rely on a set of human-engineered features. We use 3D convolutional neural network to let the network learn the features over 3D space to minimize classification error. We trained and tested over ShapeNet dataset with data augmentation by applying random transformations. We made various vi...

متن کامل

Image Classification using Convolutional Neural Network

Convolutional Neural Networks (CNNs) have been established as a powerful class of models for image recognition problems. Inspired by a blog post [1], we tried to predict the probability of an image getting a high number of likes on Instagram. We modified a pre-trained AlexNet ImageNet CNN model using Caffe on a new dataset of Instagram images with hashtag ‘me’ to predict the likability of photo...

متن کامل

Classification of Time-Series Images Using Deep Convolutional Neural Networks

Convolutional Neural Networks (CNN) has achieved a great success in image recognition task by automatically learning a hierarchical feature representation from raw data. While the majority of Time-Series Classification (TSC) literature is focused on 1D signals, this paper uses Recurrence Plots (RP) to transform time-series into 2D texture images and then take advantage of the deep CNN classifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2023

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app13031280