Cross‐modal semantic correlation learning by Bi‐CNN network
نویسندگان
چکیده
منابع مشابه
Crossmodal Network-Based Distributional Semantic Models
Despite the recent success of distributional semantic models (DSMs) in various semantic tasks they remain disconnected with real-world perceptual cues since they typically rely on linguistic features. Text data constitute the dominant source of features for the majority of such models, although there is evidence from cognitive science that cues from other modalities contribute to the acquisitio...
متن کاملSemantic-based crossmodal processing during visual suppression
To reveal the mechanisms underpinning the influence of auditory input on visual awareness, we examine, (1) whether purely semantic-based multisensory integration facilitates the access to visual awareness for familiar visual events, and (2) whether crossmodal semantic priming is the mechanism responsible for the semantic auditory influence on visual awareness. Using continuous flash suppression...
متن کاملExpectation Learning for Adaptive Crossmodal Stimuli Association
The human brain is able to learn, generalize, and predict crossmodal stimuli. Learning by expectation fine-tunes crossmodal processing at different levels, thus enhancing our power of generalization and adaptation in highly dynamic environments. In this paper, we propose a deep neural architecture trained by using expectation learning accounting for unsupervised learning tasks. Our learning mod...
متن کاملLearning Semantic Network Patterns for Hypernymy Extraction
Current approaches of hypernymy acquisition are mostly based on syntactic or surface representations and extract hypernymy relations between surface word forms and not word readings. In this paper we present a purely semantic approach for hypernymy extraction based on semantic networks (SNs). This approach employs a set of patterns sub0(a1, a2) ← premise where the premise part of a pattern is g...
متن کاملA Cognitive Model of Semantic Network Learning
Child semantic development includes learning the meaning of words as well as the semantic relations among words. A presumed outcome of semantic development is the formation of a semantic network that reflects this knowledge. We present an algorithm for simultaneously learning word meanings and gradually growing a semantic network, which adheres to the cognitive plausibility requirements of incr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IET Image Processing
سال: 2021
ISSN: 1751-9659,1751-9667
DOI: 10.1049/ipr2.12176