Curves with continuous Curvatures in Euclidean spaces
نویسندگان
چکیده
منابع مشابه
$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures
Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...
متن کاملSpatial Analysis in curved spaces with Non-Euclidean Geometry
The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...
متن کاملOn the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملInterpolations with Elasticae in Euclidean Spaces
Motivated by interpolation problems arising in image analysis, computer vision, shape reconstruction and signal processing, we develop an algorithm to simulate curve straightening flows under which curves in R of fixed length and prescribed boundary conditions to first order evolve to elasticae, i.e., to (stable) critical points of the elastic energy E given by the integral of the square of the...
متن کاملCurvatures and Tolerances in the Euclidean Motion Group
We investigate the action of imprecisely defined affine and Euclidean transformations and compute tolerance zones of points and subspaces. Tolerance zones in the Euclidean motion group are analyzed by means of linearization and bounding the linearization error via the curvatures of that group with respect to an appropriate metric.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1998
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700031804