Customer Perception Analysis Using Deep Learning and NLP
نویسندگان
چکیده
منابع مشابه
Deep Learning applied to NLP
Convolutional Neural Network (CNNs) are typically associated with Computer Vision. CNNs are responsible for major breakthroughs in Image Classification and are the core of most Computer Vision systems today. More recently CNNs have been applied to problems in Natural Language Processing and gotten some interesting results. In this paper, we will try to explain the basics of CNNs, its different ...
متن کاملDeepNL: a Deep Learning NLP pipeline
We present the architecture of a deep learning pipeline for natural language processing. Based on this architecture we built a set of tools both for creating distributional vector representations and for performing specific NLP tasks. Three methods are available for creating embeddings: feedforward neural network, sentiment specific embeddings and embeddings based on counts and Hellinger PCA. T...
متن کاملCS 224D: Deep Learning for NLP
Keyphrases: Intrinsic and extrinsic evaluations. Effect of hyperparameters on analogy evaluation tasks. Correlation of human judgment with word vector distances. Dealing with ambiguity in word using contexts. Window classification. This set of notes extends our discussion of word vectors (interchangeably called word embeddings) by seeing how they can be evaluated intrinsically and extrinsically...
متن کاملRecent Progress in Deep Learning for NLP
Neural networkbased methods have been viewed as one of the major driving force in the recent development of natural language processing (NLP). We all have witnessed with great excitement how this subfield advances: new ideas emerge at an unprecedented speed and old ideas resurge in unexpected ways. In a nutshell, there are two major trends: ● Ideas and techniques from other fields of machine l...
متن کاملDeep Learning for NLP (without Magic)
Machine learning is everywhere in today’s NLP, but by and large machine learning amounts to numerical optimization of weights for human designed representations and features. The goal of deep learning is to explore how computers can take advantage of data to develop features and representations appropriate for complex interpretation tasks. This tutorial aims to cover the basic motivation, ideas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2018
ISSN: 1877-0509
DOI: 10.1016/j.procs.2018.10.326