Data Anonymization Using Imbalanced Data for Deep Learning with Uppersampling and Undersampling

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning from Imbalanced Data Using Ensemble Methods and Cluster-Based Undersampling

Imbalanced data, where the number of instances of one class is much higher than the others, are frequent in many domains such as fraud detection, telecommunications management, oil spill detection and text classification. Traditional classifiers do not perform well when considering data that are susceptible to both within-class and between-class imbalances. In this paper, we propose the ClustFi...

متن کامل

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling

In the classification framework there are problems in which the number of examples per class is not equitably distributed, formerly known as imbalanced data sets. This situation is a handicap when trying to identify the minority classes, as the learning algorithms are not usually adapted to such characteristics. An usual approach to deal with the problem of imbalanced data sets is the use of a ...

متن کامل

A Novel Approach for Handling Imbalanced Data in Medical Diagnosis using Undersampling Technique

In many data mining applications the imbalanced learning problem is becoming ubiquitous nowadays. When the data sets have an unequal distribution of samples among classes, then these data sets are known as imbalanced data sets. When such highly imbalanced data sets are given to any classifier, then classifier may misclassify the rare samples from the minority class. To deal with such type of im...

متن کامل

Cost Sensitive Learning of Deep Feature Representations from Imbalanced Data

Class imbalance is a common problem in the case of real-world object detection and classification tasks. Data of some classes are abundant, making them an overrepresented majority, and data of other classes are scarce, making them an underrepresented minority. This imbalance makes it challenging for a classifier to appropriately learn the discriminating boundaries of the majority and minority c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Intelligent Computing Research

سال: 2019

ISSN: 2042-4655

DOI: 10.20533/ijicr.2042.4655.2019.0118