DEANet: Dual Encoder with Attention Network for Semantic Segmentation of Remote Sensing Imagery
نویسندگان
چکیده
Remote sensing has now been widely used in various fields, and the research on automatic land-cover segmentation methods of remote imagery is significant to development technology. Deep learning methods, which are developing rapidly field semantic segmentation, have applied segmentation. In this work, a novel deep network—Dual Encoder with Attention Network (DEANet) proposed. network, dual-branch encoder structure, whose first branch generate rough guidance feature map as area attention help re-encode maps next branch, proposed improve encoding ability an improved pyramid partial decoder (PPD) based parallel put forward make fuller use features form along receptive filed block (RFB). addition, edge module using transfer method introduced explicitly advance performance areas. Except for loss function composed weighted Cross Entropy (CE) Union subtract Intersection (UsI) designed training, where UsI represents new region-based aware replaces IoU adapt multi-classification tasks. Furthermore, detailed training strategy network well. Extensive experiments three public datasets verify effectiveness each our framework demonstrate that achieves more excellent over some state-of-the-art methods.
منابع مشابه
EarthMapper: A Tool Box for the Semantic Segmentation of Remote Sensing Imagery
Deep learning continues to push state-of-the-art performance for the semantic segmentation of color (i.e., RGB) imagery; however, the lack of annotated data for many remote sensing sensors (i.e. hyperspectral imagery (HSI)) prevents researchers from taking advantage of this recent success. Since generating sensor specific datasets is time intensive and cost prohibitive, remote sensing researche...
متن کاملDeep Neural Networks for Semantic Segmentation of Multispectral Remote Sensing Imagery
A semantic segmentation algorithm must assign a label to every pixel in an image. Recently, semantic segmentation of RGB imagery has advanced significantly due to deep learning. Because creating datasets for semantic segmentation is laborious, these datasets tend to be significantly smaller than object recognition datasets. This makes it difficult to directly train a deep neural network for sem...
متن کاملLow-Shot Learning for the Semantic Segmentation of Remote Sensing Imagery
Recent advances in computer vision using deep learning with RGB imagery (e.g., object recognition and detection) have been made possible thanks to the development of large annotated RGB image datasets. In contrast, multispectral image (MSI) and hyperspectral image (HSI) datasets contain far fewer labeled images, in part due to the wide variety of sensors used. These annotations are especially l...
متن کاملSpatial-spectral Classification Based on the Unsupervised Convolutional Sparse Auto-encoder for Hyperspectral Remote Sensing Imagery
Current hyperspectral remote sensing imagery spatial-spectral classification methods mainly consider concatenating the spectral information vectors and spatial information vectors together. However, the combined spatial-spectral information vectors may cause information loss and concatenation deficiency for the classification task. To efficiently represent the spatial-spectral feature informati...
متن کاملEncoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradual...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2021
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs13193900