Decomposition of an infinite complete graph into complete bipartite subgraphs
نویسندگان
چکیده
منابع مشابه
Eigensharp Graphs: Decomposition into Complete Bipartite Subgraphs
Let r(G) be the minimum number of complete bipartite subgraphs needed to partition the edges of G, and let r'G) be the larger of the number of positive and number of negative eigenvalues of G. It is known that T{G) > r(G); graphs with t(G) = r(G) are called eigensharp. Eigensharp graphs include graphs, trees, cycles Cn with n = 4 or n ^ 4k, prisms Cn\2K2 with n ^ 3fc, "twisted prisms" (also cal...
متن کاملOn Subgraphs of the Complete Bipartite Graph
G(n) denotes a graph of n vertices and G(n) denotes its complementary graph. In a complete graph every two distinct vertices are joined by an edge. Let C k (G(n)) denote the number of complete subgraphs of k vertices contained in G(n). Recently it was proved [1] that for every k 2 (n) (1) min C (G (n)) + Ck(G(n)) < k k, , ! 2 2 where the minimum is over all graphs G(n). It seems likely that (1)...
متن کاملPartitioning the vertex set of a bipartite graph into complete bipartite subgraphs
Given a graph and a positive integer k, the biclique vertex-partition problem asks whether the vertex set of the graph can be partitioned into at most k bicliques (connected complete bipartite subgraphs). It is known that this problem is NP-complete for bipartite graphs. In this paper we investigate the computational complexity of this problem in special subclasses of bipartite graphs. We prove...
متن کاملMixed cycle-E-super magic decomposition of complete bipartite graphs
An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ΣνεV(H) f(v) + ΣeεE(H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥ ...
متن کاملMixed cycle-E-super magic decomposition of complete bipartite graphs
An H-magic labeling in a H-decomposable graph G is a bijection f : V (G) ∪ E(G) → {1, 2, ..., p + q} such that for every copy H in the decomposition, ∑νεV (H) f(v) + ∑νεE (H) f(e) is constant. f is said to be H-E-super magic if f(E(G)) = {1, 2, · · · , q}. A family of subgraphs H1,H2, · · · ,Hh of G is a mixed cycle-decomposition of G if every subgraph Hi is isomorphic to some cycle Ck, for k ≥...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Časopis pro pěstování matematiky
سال: 1984
ISSN: 0528-2195
DOI: 10.21136/cpm.1984.108429