Decomposition of singular matrices into idempotents

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposition of Singular Matrices into Idempotents

In this paper we provide concrete constructions of idempotents to represent typical singular matrices over a given ring as a product of idempotents and apply these factorizations for proving our main results. We generalize works due to Laffey ([12]) and Rao ([3]) to noncommutative setting and fill in the gaps in the original proof of Rao’s main theorems (cf. [3], Theorems 5 and 7 and [4]). We a...

متن کامل

Singular value decomposition of multi-companion matrices

We obtain the singular value decomposition of multi-companion matrices. We completely characterise the columns of the matrix U and give a simple formula for obtaining the columns of the other unitary matrix, V , from the columns of U . We also obtain necessary and sufficient conditions for the related matrix polynomial to be hyperbolic.

متن کامل

Orthogonal Matrices and the Singular Value Decomposition

The first Section below extends to m × n matrices the results on orthogonality and projection we have previously seen for vectors. The Sections thereafter use these concepts to introduce the Singular Value Decomposition (SVD) of a matrix, the pseudo-inverse, and its use for the solution of linear systems.

متن کامل

Singular Value Decomposition for Multidimensional Matrices

Singular Value Decomposition (SVD) is of great significance in theory development of mathematics and statistics. In this paper we propose the SVD for 3-dimensional (3-D) matrices and extend it to the general Multidimensional Matrices (MM). We use the basic operations associated with MM introduced by Solo to define some additional aspects of MM. We achieve SVD for 3-D matrix through these MM ope...

متن کامل

Singular values of convex functions of matrices

‎Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $‎sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $‎sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$  are nonzero matrices and each $X_{i}$ is‎ ‎positive semidefinite‎. ‎It is shown that if $f$ is a nonnegative increasing ‎convex function on $left[ 0,infty right) $ satisfying $fleft( 0right)‎ ‎=0 $‎, ‎then  $$‎2s_{j}left( fleft( fra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear and Multilinear Algebra

سال: 2013

ISSN: 0308-1087,1563-5139

DOI: 10.1080/03081087.2012.754439