Decondensation at the fork
نویسندگان
چکیده
منابع مشابه
DDB2 promotes chromatin decondensation at UV-induced DNA damage
Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A-RING ubiquitin ligase (CRL4) complex. In this paper, we report a new functio...
متن کاملAction of RuvAB at replication fork structures.
The replicative apparatus often encounters blocks to its progression that necessitate removal of the block and reloading of the replication machinery. In Escherichia coli, a major pathway of replication restart involves unwinding of the stalled fork to generate a four-stranded Holliday junction, which can then be cleaved by the RuvABC helicase-endonuclease. This fork regression may be catalyzed...
متن کاملReplication fork stalling at natural impediments.
Accurate and complete replication of the genome in every cell division is a prerequisite of genomic stability. Thus, both prokaryotic and eukaryotic replication forks are extremely precise and robust molecular machines that have evolved to be up to the task. However, it has recently become clear that the replication fork is more of a hurdler than a runner: it must overcome various obstacles pre...
متن کاملPolymerase dynamics at the eukaryotic DNA replication fork.
This review discusses recent insights in the roles of DNA polymerases (Pol) delta and epsilon in eukaryotic DNA replication. A growing body of evidence specifies Pol epsilon as the leading strand DNA polymerase and Pol delta as the lagging strand polymerase during undisturbed DNA replication. New evidence supporting this model comes from the use of polymerase mutants that show an asymmetric mut...
متن کاملTiming, Coordination, and Rhythm: Acrobatics at the DNA Replication Fork*
In DNA replication, the antiparallel nature of the parental duplex imposes certain constraints on the activity of the DNA polymerases that synthesize new DNA. The leading-strand polymerase advances in a continuous fashion, but the lagging-strand polymerase is forced to restart at short intervals. In several prokaryotic systems studied so far, this problem is solved by the formation of a loop in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cell Biology
سال: 2005
ISSN: 1540-8140,0021-9525
DOI: 10.1083/jcb1686iti5