Deconvolution of calcium imaging data using marked point processes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast online deconvolution of calcium imaging data

Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-negative deconvolution problem. Importantly, the algorithm 3progresses through each time series seque...

متن کامل

Fast Nonconvex Deconvolution of Calcium Imaging Data

Calcium imaging data promises to transform the field of neuroscience by making it possible to record from large populations of neurons simultaneously. However, determining the exact moment in time at which a neuron spikes, from a calcium imaging data set, amounts to a non-trivial deconvolution problem which is of critical importance for downstream analyses. While a number of formulations have b...

متن کامل

Stable Marked Point Processes

In many contexts, such as queueing theory, spatial statistics, geostatistics and meteorology, data are observed at irregular spatial positions. One model of this situation is to consider the observation points as generated by a Poisson Process. Under this assumption, we study the limit behavior of the partial sums of the Marked Point Process {(ti, X(ti))}, where X(t) is a stationary random fiel...

متن کامل

Rescaling Marked Point Processes

In 1971, Meyer showed how one could use the compensator to rescale a multivariate point process, forming independent Poisson processes with intensity one. Meyer’s result has been generalized to multi-dimensional point processes. Here, we explore generalization of Meyer’s theorem to the case of marked point processes, where the mark space may be quite general. Assuming simplicity and the existen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLOS Computational Biology

سال: 2020

ISSN: 1553-7358

DOI: 10.1371/journal.pcbi.1007650