Deep and Hybrid Learning Techniques for Diagnosing Microscopic Blood Samples for Early Detection of White Blood Cell Diseases
نویسندگان
چکیده
The immune system is one of the most critical systems in humans that resists all diseases and protects body from viruses, bacteria, etc. White blood cells (WBCs) play an essential role system. To diagnose diseases, doctors analyze samples to characterize features WBCs. characteristics WBCs are determined based on chromatic, geometric, textural WBC nucleus. Manual diagnosis subject many errors differing opinions experts takes a long time; however, artificial intelligence techniques can help solve these challenges. Determining type using automatic helps hematologists identify different types diseases. This work aims overcome manual by developing automated for classifying microscopic sample datasets early detection Several proposed were used: first, neural network algorithms, such as networks (ANNs) feed-forward (FFNNs), applied dataset extracted hybrid method between two local binary pattern (LBP) gray-level co-occurrence matrix (GLCM). All algorithms attained superior accuracy diagnosis. Second, pre-trained convolutional (CNN) models AlexNet, ResNet-50, GoogLeNet, ResNet-18 exceptional results Third, technique was applied, consisting pair blocks: CNN block extracting deep SVM algorithm classification with efficiency. These named AlexNet SVM, ResNet-50 GoogLeNet SVM. achieved promising when diagnosing model 99.3%, precision 99.5%, sensitivity 99.25%, specificity 99.75%, AUC 99.99%.
منابع مشابه
Blood smear analyzer for white blood cell counting: A hybrid microscopic image analyzing technique
Total count and differential count of leukocytes or white blood cells (WBC) in blood samples are very important pathological factors for diagnosing a disease. There are not enough pathological infrastructures in the remote places of India and other developing countries. The objective of this work is to design a system, compatible with telemedicine, for automatic calculation of the total count a...
متن کاملEarly detection of MS in fMRI images using deep learning techniques
Introduction & Objective:MS is a disease of the central nervous system in which the body makes a defensive attack on its tissues. The disease can affect the brain and spinal cord, causing a wide range of potential symptoms, including balance, movement and vision problems. MRI and fMRI images are a very important tool in the diagnosis and treatment of MS. The aim of this study was to provide...
متن کاملEvaluation of CD64 Expression on Peripheral Blood Neutrophils for Early Detection of Neonatal Sepsis
Background: Neonatal sepsis is a life-threatening disease with an incidence of 1 to 10 per 1000 live births and a mortality rate of 15% to 50%. The clinical signs are non-specific and indistinguishable from those caused by a variety of neonatal noninfectious disorders. Objective: The aim of this study was to determine the importance of CD64 expression (FcgRI), a neutrophil surface marker, in ea...
متن کاملapplication and construction of carbon paste modified electrodes developed for determination of metal ions in some real samples
ساخت الکترودهاِی اصلاح شده ِیکِی از چالشهاِی همِیشگِی در دانش شیمِی بوِیژه شیمِی تجزیه مِی باشد ،که با در نظر گرفتن سادگِی ساخت، کاربردی بودن و ارزان بودن روش مِی توان به باارزش بودن چنِین سنسورهاِی پِی برد.آنچه که در ادامه آورده شده به ساخت و کاربرد الکترودهاِی اصلاح شده با استفاده از نانو ذرات در اندازه گِیرِی ولتامترِی آهن وکادمِیم اشاره دارد. کار اول اختصاص دارد به ساخت الکترود خمِیر کربن اصلاح شده با لِیگاند داِ...
15 صفحه اولislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2023
ISSN: ['2079-9292']
DOI: https://doi.org/10.3390/electronics12081853