Deep Extreme Learning Machine and Its Application in EEG Classification
نویسندگان
چکیده
منابع مشابه
Deep Convolutional Extreme Learning Machine and Its Application in Handwritten Digit Classification
In recent years, some deep learning methods have been developed and applied to image classification applications, such as convolutional neuron network (CNN) and deep belief network (DBN). However they are suffering from some problems like local minima, slow convergence rate, and intensive human intervention. In this paper, we propose a rapid learning method, namely, deep convolutional extreme l...
متن کاملMonotonic classification extreme learning machine
Monotonic classification problems mean that both feature values and class labels are ordered and monotonicity relationships exist between some features and the decision label. Extreme Learning Machine (ELM) is a singlehidden layer feedforward neural network with fast training rate and good generalization capability, but due to the existence of training error, ELM cannot be directly used to hand...
متن کاملDiscriminative manifold extreme learning machine and applications to image and EEG signal classification
Extreme learning machine (ELM) uses a non-iterative method to train single-hidden-layer feed-forward networks (SLFNs), which has been proven to be an efficient and effective learning model for both classification and regression. The main advantage of ELM lies in that the input weights as well as the hidden layer biases can be randomly generated, which contributes to the analytical solution of o...
متن کاملMultilabel machine learning and its application to semantic scene classification
In classic pattern recognition problems, classes are mutually exclusive by definition. Classification errors occur when the classes overlap in the feature space. We examine a different situation, occurring when the classes are, by definition, not mutually exclusive. Such problems arise in scene and document classification and in medical diagnosis. We present a framework to handle such problems ...
متن کاملOne-Class Classification with Extreme Learning Machine
One-class classification problemhas been investigated thoroughly for past decades. Among one of themost effective neural network approaches for one-class classification, autoencoder has been successfully applied for many applications. However, this classifier relies on traditional learning algorithms such as backpropagation to train the network, which is quite time-consuming. To tackle the slow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2015
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2015/129021