Deep Learning of High-Resolution Unmanned Aerial Vehicle Imagery for Classifying Halophyte Species: A Comparative Study for Small Patches and Mixed Vegetation

نویسندگان

چکیده

Recent advances in deep learning (DL) and unmanned aerial vehicle (UAV) technologies have made it possible to monitor salt marshes more efficiently precisely. However, studies rarely compared the classification performance of DL with pixel-based method for coastal wetland monitoring using UAV data. In particular, many been conducted at landscape level; however, little is known about species discrimination very small patches mixed vegetation. We constructed a dataset based on UAV-RGB data methods five scenarios (combinations annotation type patch size) marsh Maximum likelihood, method, showed lowest overall accuracy 73%, whereas U-Net achieved over 90% all scenarios. As expected, comparison methods, approach most accurate results. Unexpectedly, there was no significant difference between two types labeling sizes this study. when comparing results detail, we confirmed that polygon-type effective mixed-vegetation than bounding-box type. Moreover, smaller size detecting vegetation patches. Our suggest combination can facilitate mapping local scale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

transference of imagery: a comparative formalistic study of shakespeares hamlet and its two persian translations

هدف از این تحقیق بررسی انتقال صور خیال هملت در دو ترجمه ی فارسی آن از نظر فرمالیستی بود. برای بدست آوردن داده-های مورد نیاز، 130 نمونه استعاره، مجاز، ایهام، کنایه و پارادوکس در متن اصلی مشخص شده و سپس بر اساس مدل نیومارک (1998) برای ترجمه ی استعاره یا بطور کلی زبان مجاز با معادل های فارسی شان مقایسه گردیدند. این تحقیق بر آن بود تا روش های استفاده شده برای ترجمه هر کدام از انواع زبان مجاز ذکر شد...

15 صفحه اول

Circulation-controlled high-lift wing for small unmanned aerial vehicle

Small unmanned aerial vehicles (SUAVs) have recently attracted considerable research and development interest owing to their small size, portability, and limited operational risk. In SUAVs, the Reynolds number Re is typically very low because they are small and fly at low speeds. The Reynolds number strongly influences the airfoil performance, and at Re = 10, the lift-drag (L/D) ratio decreases...

متن کامل

A Procedure for Orthorectification of Sub-decimeter Resolution Imagery Obtained with an Unmanned Aerial Vehicle (uav)

Digital aerial photography acquired with unmanned aerial vehicles (UAVs) has great value for resource management due to flexibility and relatively low cost for image acquisition. The very high resolution imagery (5 cm) allows for mapping bare soil and vegetation types, structure and patterns in great detail. While image acquisition is relatively straightforward, the creation of orthorectified, ...

متن کامل

A system embedded in small unmanned aerial vehicle for vigor analysis of vegetation

This work presents a system embedded in a fixed-wing unmanned aerial vehicle that analyzes images and recognizes deformities in plantations in real time, saving their respective geographical location. With this system, a second flight of a lower altitude may be executed over specific points selected on the first flight, obtained a more approximated view, or even applying some fertilizer. A suga...

متن کامل

Modeling of a Small Unmanned Aerial Vehicle

Abstract—Unmanned aircraft systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2023

ISSN: ['2072-4292']

DOI: https://doi.org/10.3390/rs15112723