Deep Transfer Learning in der Arbeitsplanung/Deep transfer learning in process planning – A concept for applying deep transfer learning in process planning using the example of manufacturing operations selection

نویسندگان

چکیده

Für die Nutzung von Deep Learning zur Unterstützung der Prozesse innerhalb Arbeitsplanung wird eine Vielzahl Daten benötigt. In industriellen Praxis ist Aufbereitung solcher Datensätze sehr komplex und mit hohen Aufwand verbunden. Durch Transfer kann benötigte Datenmenge reduziert werden. Am Beispiel Fertigungsvorgangsermittlung ein Konzept vorgestellt, das Anwendung ermöglicht. A large amount of data is required for the use deep learning to support process planning. industrial practice, preparation such sets very complex and requires a lot manual effort. By using transfer learning, can be reduced. Therefore, example manufacturing operation selection, concept introduced that enables application within

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concept drift detection in business process logs using deep learning

Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...

متن کامل

Hybrid Heterogeneous Transfer Learning through Deep Learning

Most previous heterogeneous transfer learning methods learn a cross-domain feature mapping between heterogeneous feature spaces based on a few cross-domain instance-correspondences, and these corresponding instances are assumed to be representative in the source and target domains respectively. However, in many realworld scenarios, this assumption may not hold. As a result, the constructed feat...

متن کامل

Simulated Transfer Learning Through Deep Reinforcement Learning

This paper encapsulates the use reinforcement learning on raw images provided by a simulation to produce a partially trained network. Before training is continued, this partially trained network is fed different raw images that are more tightly coupled with a richer representation of the non-simulated environment. The use of transfer learning allows for the model to adjust to this richer repres...

متن کامل

Deep Multi-Instance Transfer Learning

We present a new approach for transferring knowledge from groups to individuals that comprise them. We evaluate our method in text, by inferring the ratings of individual sentences using full-review ratings. This approach combines ideas from transfer learning, deep learning and multi-instance learning, and reduces the need for laborious human labelling of fine-grained data when abundant labels ...

متن کامل

A Theoretical Framework for Deep Transfer Learning

We generalize the notion of PAC learning to include transfer learning. In our framework, the linkage between the source and the target tasks is a result of having the sample distribution of all classes drawn from the same distribution of distributions, and by restricting all source and a target concepts to belong to the same hypothesis subclass. We have two models: an adversary model and a rand...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Werkstattstechnik (1997. Internet)

سال: 2023

ISSN: ['1436-5006', '1436-4980']

DOI: https://doi.org/10.37544/1436-4980-2023-06-16