Deep Unsupervised Domain Adaptation: A Review of Recent Advances and Perspectives

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Unsupervised Deep Domain Adaptation for Pedestrian Detection

This paper addresses the problem of unsupervised domain adaptation on the task of pedestrian detection in crowded scenes. First, we utilize an iterative algorithm to iteratively select and auto-annotate positive pedestrian samples with high confidence as the training samples for the target domain. Meanwhile, we also reuse negative samples from the source domain to compensate for the imbalance b...

متن کامل

Deep Transfer Network: Unsupervised Domain Adaptation

Domain adaptation aims at training a classifier in one dataset and applying it to a related but not identical dataset. One successfully used framework of domain adaptation is to learn a transformation to match both the distribution of the features (marginal distribution), and the distribution of the labels given features (conditional distribution). In this paper, we propose a new domain adaptat...

متن کامل

A Review of the Recent Advances and Application of 3D Printing in Pharmacy and Drug Delivery

 Throughout human history, the most valuable inventions have been those that, even decades after their initial introduction, affected the lives of people around the world. 3D printers similar to steam engines, light bulbs, and the World Wide Web are thought to be among the inventions that will revolutionize the future of different industries. This technology is generally introduced as the manuf...

متن کامل

Deep Hashing Network for Unsupervised Domain Adaptation Supplementary Material

1. Loss Function Derivative In this section we outline the derivative of Equation 8 for the backpropagation algorithm; min U J = L(Us) + γM(Us, Ut) + ηH(Us, Ut), (8) where, U := {Us ∪ Ut} and (γ, η) control the importance of domain adaptation (1) and target entropy loss (7) respectively. In the following subsections, we outline the derivative of the individual terms w.r.t. the input U. 1.1. Der...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: APSIPA transactions on signal and information processing

سال: 2022

ISSN: ['2048-7703']

DOI: https://doi.org/10.1561/116.00000192