Delay dynamic equations with stability
نویسندگان
چکیده
منابع مشابه
Delay Dynamic Equations with Stability
The unification and extension of continuous calculus, discrete calculus, q-calculus, and indeed arbitrary real-number calculus to time-scale calculus, where a time scale is simply any nonempty closed set of real numbers, were first accomplished by Hilger in [4]. Since then, time-scale calculus has made steady inroads in explaining the interconnections that exist among the various calculuses, an...
متن کاملStability and periodicity in dynamic delay equations
Keywords: Delay dynamic equations Fixed point theory Lyapunov Periodic solutions Stability Time scales a b s t r a c t Let T be an arbitrary time scale that is unbounded above. By means of a variation of Lyapunov's method and contraction mapping principle this paper handles asymptotic stability of the zero solution of the completely delayed dynamic equations x ∆ (t) = −a(t)x(δ(t))δ ∆ (t). Moreo...
متن کاملHyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay
In this paper we are going to study the Hyers{Ulam{Rassias typesof stability for nonlinear, nonhomogeneous Volterra integral equations with delayon nite intervals.
متن کاملExponential stability of second-order evolution equations with structural damping and dynamic boundary delay feedback
We consider a stabilization problem for abstract second-order evolution equations with dynamic boundary feedback laws with a delay and distributed structural damping. We prove an exponential stability result under a suitable condition between the internal damping and the boundary laws. The proof of the main result is based on an identity with multipliers that allows to obtain a uniform decay es...
متن کاملPeriodicity and Stability in Nonlinear Neutral Dynamic Equations with Infinite Delay on a Time Scale
Let T be a periodic time scale. We use a fixed point theorem due to Krasnoselskii to show that the nonlinear neutral dynamic equation with infinite delay x(t) = −a(t)x(t) + (Q(t, x(t− g(t))))) + ∫ t −∞ D (t, u) f (x(u)) ∆u, t ∈ T, has a periodic solution. Under a slightly more stringent inequality we show that the periodic solution is unique using the contraction mapping principle. Also, by the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2006
ISSN: 1687-1839,1687-1847
DOI: 10.1155/ade/2006/94051