Density upper bound for congruent and non-congruent hyperball packings generated by truncated regular simplex tilings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contact Numbers for Congruent Sphere Packings in Euclidean 3-Space

The contact graph of an arbitrary finite packing of unit balls in Euclidean 3-space is the (simple) graph whose vertices correspond to the packing elements and whose two vertices are connected by an edge if the corresponding two packing elements touch each other. One of the most basic questions on contact graphs is to find the maximum number of edges that a contact graph of a packing of n unit ...

متن کامل

Stability of the simplex bound for packings by equal spherical caps determined by simplicial regular polytopes

It is well known that the vertices of any simplicial regular polytope in R determine an optimal packing of equal spherical balls in Sd−1. We prove a stability version of this result.

متن کامل

1 3 M ay 1 99 4 Average kissing numbers for non - congruent sphere packings

(The appearance of the number of the beast in the lower bound is purely coincidental.) The supremal average kissing number k is defined in any dimension, as are kc, the supremal average kissing number for congruent ball packing, and ks, the maximal kissing number for a single ball surrounded by congruent balls with disjoint interiors. (Clearly, kc ≤ k and kc ≤ ks.) It is interesting that k is a...

متن کامل

Dense packings of congruent circles in a circle

The problem of finding packings of congruent circles in a circle, or, equivalently, of spreading points in a circle, is considered. Two packing algorithms are discussed, and the best packings found of up to 65 circles are presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rendiconti del Circolo Matematico di Palermo Series 2

سال: 2017

ISSN: 0009-725X,1973-4409

DOI: 10.1007/s12215-017-0316-8