Dependency-Based Local Attention Approach To Neural Machine Translation
نویسندگان
چکیده
منابع مشابه
Sequence-to-Dependency Neural Machine Translation
Nowadays a typical Neural Machine Translation (NMT) model generates translations from left to right as a linear sequence, during which latent syntactic structures of the target sentences are not explicitly concerned. Inspired by the success of using syntactic knowledge of target language for improving statistical machine translation, in this paper we propose a novel Sequence-to-Dependency Neura...
متن کاملAttention-based Multimodal Neural Machine Translation
We present a novel neural machine translation (NMT) architecture associating visual and textual features for translation tasks with multiple modalities. Transformed global and regional visual features are concatenated with text to form attendable sequences which are dissipated over parallel long short-term memory (LSTM) threads to assist the encoder generating a representation for attention-bas...
متن کاملEffective Approaches to Attention-based Neural Machine Translation
An attentional mechanism has lately been used to improve neural machine translation (NMT) by selectively focusing on parts of the source sentence during translation. However, there has been little work exploring useful architectures for attention-based NMT. This paper examines two simple and effective classes of attentional mechanism: a global approach which always attends to all source words a...
متن کاملWhat does Attention in Neural Machine Translation Pay Attention to?
Attention in neural machine translation provides the possibility to encode relevant parts of the source sentence at each translation step. As a result, attention is considered to be an alignment model as well. However, there is no work that specifically studies attention and provides analysis of what is being learned by attention models. Thus, the question still remains that how attention is si...
متن کاملNeural Machine Translation with Source Dependency Representation
Source dependency information has been successfully introduced into statistical machine translation. However, there are only a few preliminary attempts for Neural Machine Translation (NMT), such as concatenating representations of source word and its dependency label together. In this paper, we propose a novel attentional NMT with source dependency representation to improve translation performa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers, Materials & Continua
سال: 2019
ISSN: 1546-2226
DOI: 10.32604/cmc.2019.05892