Derivation relations for finite multiple zeta values
نویسندگان
چکیده
منابع مشابه
On Extended Derivation Relations for Multiple Zeta Values
Recently, Masanobu Kaneko introduced a conjecture on an extension of the derivation relations for multiple zeta values. The aim of this paper is to give a proof of the conjecture by reducing it to a class of relations for multiple zeta values studied by Kawashima. Also we will give some algebraic aspects of the extended derivation operator ∂ (c) n on Q〈x, y〉, which was defined by modeling a Hop...
متن کاملOn the Quasi-derivation Relation for Multiple Zeta Values
Recently, Masanobu Kaneko introduced a conjecture on an extension of the derivation relation for multiple zeta values. The goal of the present paper is to present a proof of this conjecture by reducing it to a class of relations for multiple zeta values studied by Kawashima. In addition, some algebraic aspects of the quasi-derivation operator ∂ (c) n on Q〈x, y〉, which was defined by modeling a ...
متن کاملOn a Reciprocity Law for Finite Multiple Zeta Values
Abstract. It was shown in [7, 9] that harmonic numbers satisfy certain reciprocity relations, which are in particular useful for the analysis of the quickselect algorithm. The aim of this work is to show that a reciprocity relation from [7, 9] can be generalized to finite variants of multiple zeta values, involving a finite variant of the shuffle identity for multiple zeta values. We present th...
متن کاملAspectsof Multiple Zeta Values
Multiple zeta values (MZVs, also called Euler sums or multiple harmonic series) are nested generalizations of the classical Riemann zeta function evaluated at integer values. The fact that an integral representation of MZVs obeys a shuue product rule allows the possibility of a combi-natorial approach to them. Using this approach we prove a longstanding conjecture of Don Zagier about MZVs with ...
متن کاملMultiple Zeta Values
for any collection of positive integers s1, s2, . . . , sl. By definition, Lis(1) = ζ(s), s ∈ Z, s1 ≥ 2, s2 ≥ 1, . . . , sl ≥ 1. (4.2) Taking, as before for multiple zeta values, Lixs(z) := Lis(z), Li1(z) := 1, (4.3) let us extend action of the map Li : w 7→ Liw(z) by linearity on the graded algebra H (not H, since multi-indices are coded by words in H). Lemma 4.1. Let w ∈ H be an arbitrary non...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Number Theory
سال: 2017
ISSN: 1793-0421,1793-7310
DOI: 10.1142/s1793042117500245