Designing classifier fusion systems by genetic algorithms
نویسندگان
چکیده
منابع مشابه
Designing classifier fusion systems by genetic algorithms
We suggest two simple ways to use a genetic algorithm (GA) to design a multiple-classifier system. The first GA version selects disjoint feature subsets to be used by the individual classifiers, whereas the second version selects (possibly) overlapping feature subsets, and also the types of the individual classifiers. The two GAs have been tested with four real data sets: Heart, Satimage, Lette...
متن کاملGenetic algorithms in classifier fusion
An intense research around classifier fusion in recent years revealed that combining performance strongly depends on careful selection of classifiers to be combined. Classifier performance depends, in turn, on careful selection of features, which could be further restricted by the subspaces of the data domain. On the other hand, there is already a number of classifier fusion techniques availabl...
متن کاملClassifier Systems and Genetic Algorithms
Classifier systems are massively parallel, message-passing, rule-based systems that learn through credit assignment (the bucket brigade algorithm) and rule discovery (the genetic algorithm). They typically operate in environments that exhibit one or more of the following characteristics: (1) perpetually novel events accompanied by large amounts of noisy or irrelevant data; (2) continual, often ...
متن کاملTo Appear in Ieee Transactions on Evolutionary Computation 1 Designing Classifier Fusion Systemsby Genetic
متن کامل
Designing Genetic Algorithms for the
| Finding the best state assignment for implementing a synchronous sequential circuit is important for reducing silicon area or chip count in many digital designs. This State Assignment Problem (SAP) belongs to a broader class of combinatorial optimization problems than the well studied traveling salesman problem, which can be formulated as a special case of SAP. The search for a good solution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Evolutionary Computation
سال: 2000
ISSN: 1089-778X
DOI: 10.1109/4235.887233