Detachments in Oceanic Lithosphere: Deformation, Magmatism, Fluid Flow, and Ecosystems
نویسندگان
چکیده
منابع مشابه
The Oceanic Lithosphere
1. Background: Mid-Ocean Ridges and the oceanic lithosphere 2. Methods of study of the oceanic lithosphere 3. Components of the oceanic lithosphere and their physical properties 4. Structure of the oceanic lithosphere 4.1 ‘Homogeneous’ lithosphere 4.2 ‘Heterogeneous’ lithosphere 4.3 Hot Spot Influenced Lithosphere 4.4.Continent to Ocean Transition 5. Forming the oceanic lithosphere at the ridge...
متن کاملCompression of Oceanic Lithosphere: An Analysis of Intraplate Deformation in the Central Indian Basin
Intraplate compressional deformation in the Central Indian Basin is expressed as linear E-W trending topographic undulations and geoid anomlies with characteristic spacings of approximately 200 km. To elucidate the nature of this deformation, we develop models of an oceanic lithosphere in a state of horizontal compression. The lithosphere is treated as a viscous or plastic layer of uniform stre...
متن کاملOn the Yield Strength of Oceanic Lithosphere
The yield strength of oceanic lithosphere determines the mode of mantle convection in a terrestrial planet, and low-temperature plasticity in olivine aggregates is generally believed to govern the plastic rheology of the stiffest part of lithosphere. Because, so far, proposed flow laws for this mechanism exhibit nontrivial discrepancies, we revisit the recent high-pressure deformation data of M...
متن کاملEffective thermal expansivity of Maxwellian oceanic lithosphere
The thermal expansivity of oceanic lithosphere is a key mineral physics parameter that controls the rate of seafloor subsidence. Because of strongly temperature-dependent mantle rheology, effective expansivity for lithosphere as a whole could be substantially lower than indicated by mineral physics data. Viscoelastic modeling indicates that this reduction in expansivity could be as high as ∼15–...
متن کاملCoupled fluid flow and geomechanical deformation modeling
Accurate prediction of reservoir production in structurally weak geologic areas requires both mechanical deformation and fluid flow modeling. Loose staggered-in-time coupling of two independent flow and mechanics simulators captures much of the complex physics at a substantially reduced cost. Two 3-D finite element simulators—Integrated Parallel Accurate Reservoir Simulator (IPARS) for flow and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Eos, Transactions American Geophysical Union
سال: 2011
ISSN: 0096-3941,2324-9250
DOI: 10.1029/2011eo040003