Detecting Fake Twitter Accounts with using Artificial Neural Networks
نویسندگان
چکیده
منابع مشابه
Detecting Spam with Artificial Neural Networks
This is my final project for CS 539. In this project, I demonstrate the suitability of neural networks for the task of classifying spam emails. I discuss how I was able to attain a classification accuracy of 94.6% through minor changes in network configuration and the momentum alpha parameter, ultimately outperforming existing research on this same dataset.
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Detecting Depression in Elderly People by Using Artificial Neural Network
Introduction: The possibility of depression is common in the elderly. Novel technologies allow us to monitor people related to depression. Hence, a model was provided to detect depression in elderly based on artificial neural network (ANN). Methods: The present study is an applied descriptive-survey research. Forty elderly people were randomly selected from the Elderly Care Center in Gonbad Ka...
متن کاملDetecting Hacked Twitter Accounts by Examining Behavioural Change using Twitter Metadata
Social media accounts are valuable for hackers for spreading phishing links, malware and spam. Furthermore, some people deliberately hack an acquaintance to damage his image. In this paper, a classification model is described for detecting these hacked Twitter accounts by examining changing features in behaviour. We look at changes in language, source, URL, retweets, frequency and time. Our mod...
متن کاملDetection of Fake Accounts in Social Networks Based on One Class Classification
Detection of fake accounts on social networks is a challenging process. The previous methods in identification of fake accounts have not considered the strength of the users’ communications, hence reducing their efficiency. In this work, we are going to present a detection method based on the users’ similarities considering the network communications of the users. In the first step, similarity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Artificial Intelligence Studies
سال: 2018
ISSN: 2651-5350
DOI: 10.30855/ais.2018.01.01.03