Deviance information criterion for latent variable models and misspecified models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Deviance Information Criterion for Latent Variable Models∗

It is shown in this paper that the data augmentation technique undermines the theoretical underpinnings of the deviance information criterion (DIC), a widely used information criterion for Bayesian model comparison, although it facilitates parameter estimation for latent variable models via Markov chain Monte Carlo (MCMC) simulation. Data augmentation makes the likelihood function non-regular a...

متن کامل

Fast computation of the deviance information criterion for latent variable models

The deviance information criterion (DIC) has been widely used for Bayesian model comparison. However, recent studies have cautioned against the use of the DIC for comparing latent variable models. In particular, the DIC calculated using the conditional likelihood (obtained by conditioning on the latent variables) is found to be inappropriate, whereas the DIC computed using the integrated likeli...

متن کامل

Deviance Information Criterion for Comparing Stochastic Volatility Models

Bayesian methods have been efŽ cient in estimating parameters of stochastic volatility models for analyzing Ž nancial time series. Recent advances made it possible to Ž t stochastic volatility models of increasing complexity, including covariates, leverage effects, jump components, and heavy-tailed distributions.However, a formal model comparison via Bayes factors remains difŽ cult. The main ob...

متن کامل

Deviance Information Criteria for Missing Data Models

The deviance information criterion (DIC) introduced by Spiegelhalter et al. (2002) for model assessment and model comparison is directly inspired by linear and generalised linear models, but it is open to different possible variations in the setting of missing data models, depending in particular on whether or not the missing variables are treated as parameters. In this paper, we reassess the c...

متن کامل

Latent Variable Models

A powerful approach to probabilistic modelling involves supplementing a set of observed variables with additional latent, or hidden, variables. By defining a joint distribution over visible and latent variables, the corresponding distribution of the observed variables is then obtained by marginalization. This allows relatively complex distributions to be expressed in terms of more tractable joi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Econometrics

سال: 2020

ISSN: 0304-4076

DOI: 10.1016/j.jeconom.2019.11.002