Differential forms on quotients by reductive group actions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quotients by non-reductive algebraic group actions

Geometric invariant theory (GIT) was developed in the 1960s by Mumford in order to construct quotients of reductive group actions on algebraic varieties and hence to construct and study a number of moduli spaces, including, for example, moduli spaces of bundles over a nonsingular projective curve [26, 28]. Moduli spaces often arise naturally as quotients of varieties by algebraic group actions,...

متن کامل

Differential forms and smoothness of quotients by reductive groups

Let π : X −→ Y be a good quotient of a smooth variety X by a reductive algebraic group G and 1 ≤ k ≤ dim (Y ) an integer. We prove that if, locally, any invariant horizontal differential k-form onX (resp. any regular differential k-form on Y ) is a Kähler differential form on Y then codim (Ysing) > k + 1. We also prove that the dualizing sheaf on Y is the sheaf of invariant horizontal dim (Y )-...

متن کامل

Geometric Quotients of Unipotent Group Actions

This article is devoted to the problem of constructing geometric quotients of a quasiaffine scheme X over a field of characteristic 0 by a unipotent algebraic group G. This problem arises naturally if one tries to construct moduli spaces in the sense of Mumford's 'geometric invariant theory' for singularities of algebraic varieties or for modules over the local ring of such a singularity. Indee...

متن کامل

Factorial Algebraic Group Actions and Categorical Quotients

Given an action of an affine algebraic group with only trivial characters on a factorial variety, we ask for categorical quotients. We characterize existence in the category of algebraic varieties. Moreover, allowing constructible sets as quotients, we obtain a more general existence result, which, for example, settles the case of a finitely generated algebra of invariants. As an application, w...

متن کامل

Quotients by Reductive Group, Borel Subgroup, Unipotent Group and Maximal Torus

Consider an algebraic action of a connected complex reductive algebraic group on a complex polarized projective variety. In this paper, we first introduce the nilpotent quotient, the quotient of the polarized projective variety by a maximal unipotent subgroup. Then, we introduce and investigate three induced actions: one by the reductive group, one by a Borel subgroup, and one by a maximal toru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1998

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-98-04320-2