Differential identifiability clustering algorithms for big data analysis
نویسندگان
چکیده
منابع مشابه
Iterative big data clustering algorithms: a review
Enterprises today are dealing with the massive size of data, which have been explosively increasing. The key requirements to address this challenge are to extract, analyze, and process data in a timely manner. Clustering is an essential data mining tool that plays an important role for analyzing big data. However, largescale data clustering has become a challenging task because of the large amo...
متن کاملMapReduce Algorithms for Big Data Analysis
There is a growing trend of applications that should handle big data. However, analyzing big data is a very challenging problem today. For such applications, the MapReduce framework has recently attracted a lot of attention. Google’s MapReduce or its open-source equivalent Hadoop is a powerful tool for building such applications. In this tutorial, we will introduce the MapReduce framework based...
متن کاملA Comparative Quantitative Analysis of Contemporary Big Data Clustering Algorithms for Market Segmentation in Hospitality Industry
The hospitality industry is one of the data-rich industries that receives huge Volumes of data streaming at high Velocity with considerably Variety, Veracity, and Variability. These properties make the data analysis in the hospitality industry a big data problem. Meeting the customers' expectations is a key factor in the hospitality industry to grasp the customers' loyalty. To achieve this goal...
متن کاملBig Trajectory Data Analysis for Clustering and Anomaly Detection
We’ve been developing a sensor that can acquire positional data. Recently, a position-based big data creation is easy task and trajectory analysis is the highest priority for ”position-based service”. Traffic congestion, marketing mining, and pattern analysis are the one of the examples in trajectory analysis field. In this paper, we propose the trajectory analysis approach for clustering and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China Information Sciences
سال: 2021
ISSN: 1674-733X,1869-1919
DOI: 10.1007/s11432-020-2910-1