Differential Neural Network Identification for Homogeneous Dynamical Systems
نویسندگان
چکیده
منابع مشابه
Homogeneous dynamical systems theory
In this paper, we study controlled homogeneous dynamical systems and derive conditions under which the system is perspective controllable. We also derive conditions under which the system is observable in the presence of a control over the complex base field. In the absence of any control input, we derive a necessary and sufficient condition for observability of a homogeneous dynamical system o...
متن کاملobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولjordan c-dynamical systems
in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...
15 صفحه اولBilinear residual Neural Network for the identification and forecasting of dynamical systems
Due to the increasing availability of large-scale observation and simulation datasets, data-driven representations arise as efficient and relevant computation representations of dynamical systems for a wide range of applications, where modeldriven models based on ordinary differential equation remain the state-of-the-art approaches. In this work, we investigate neural networks (NN) as physicall...
متن کاملRunge-Kutta neural network for identification of dynamical systems in high accuracy
This paper proposes Runge-Kutta neural networks (RKNNs) for identification of unknown dynamical systems described by ordinary differential equations (i.e., ordinary differential equation or ODE systems) with high accuracy. These networks are constructed according to the Runge-Kutta approximation method. The main attraction of the RKNNs is that they precisely estimate the changing rates of syste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC-PapersOnLine
سال: 2019
ISSN: 2405-8963
DOI: 10.1016/j.ifacol.2019.11.784