Differentially Private Neural Networks with Bounded Activation Function
نویسندگان
چکیده
منابع مشابه
Differentially Private Local Electricity Markets
Privacy-preserving electricity markets have a key role in steering customers towards participation in local electricity markets by guarantying to protect their sensitive information. Moreover, these markets make it possible to statically release and share the market outputs for social good. This paper aims to design a market for local energy communities by implementing Differential Privacy (DP)...
متن کاملNonparametric regression using deep neural networks with ReLU activation function
Consider the multivariate nonparametric regression model. It is shown that estimators based on sparsely connected deep neural networks with ReLU activation function and properly chosen network architecture achieve the minimax rates of convergence (up to log n-factors) under a general composition assumption on the regression function. The framework includes many well-studied structural constrain...
متن کاملDifferentially Private Billing with Rebates
A number of established and novel business models are based on fine grained billing, including pay-per-view, mobile messaging, voice calls, payas-you-drive insurance, smart metering for utility provision, private computing clouds and hosted services. These models apply fine-grained tariffs dependent on time-of-use or place of-use to readings to compute a bill. We extend previously proposed bill...
متن کاملDifferentially Private Learning with Kernels
In this paper, we consider the problem of differentially private learning where access to the training features is through a kernel function only. As mentioned in Chaudhuri et al. (2011), the problem seems to be intractable for general kernel functions in the standard learning model of releasing different private predictor. We study this problem in three simpler but practical settings. We first...
متن کاملStability analysis of delayed neural networks with slope-bounded activation functions
This paper deals with the global asymptotic stability problem of delayed neural networks with unbounded activation functions and network parameter uncertainties. New stability criteria for global asymptotic stability of the delayed neural networks are derived by employing suitable Lyapunov functionals. These results reported in this paper can be regarded as generalizations of some existing stab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2021
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2021edl8007