Diffuse reflection diameter and radius for convex-quadrilateralizable polygons

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffuse reflection diameter in simple polygons

We prove a conjecture of Aanjaneya, Bishnu, and Pal that the maximum number of diffuse reflections needed for a point light source to illuminate the interior of a simple polygon with n walls is bn/2c − 1. Light reflecting diffusely leaves a surface in all directions, rather than at an identical angle as with specular reflections.

متن کامل

Extremal problems for convex polygons

Consider a convex polygon Vn with n sides, perimeter Pn, diameter Dn, area An, sum of distances between vertices Sn and widthWn. Minimizing or maximizing any of these quantities while fixing another defines ten pairs of extremal polygon problems (one of which usually has a trivial solution or no solution at all). We survey research on these problems, which uses geometrical reasoning increasingl...

متن کامل

Perimeter generating functions for the mean-squared radius of gyration of convex polygons

We have derived long series expansions for the perimeter generating functions of the radius of gyration of various polygons with a convexity constraint. Using the series we numerically find simple (algebraic) exact solutions for the generating functions. In all cases the size exponent ν = 1. PACS numbers: 05.50.+q, 05.70.Jk, 02.10.Ox

متن کامل

Dissections of Polygons into Convex Polygons

In the paper we present purely combinatorial conditions that allow us to recognize the topological equivalence (or non-equivalence) of two given dissections. Using a computer program based on this result, we are able to generate a set which contains all topologically non-equivalent dissections of a p0-gon into convex pi-gons, i = 1, ..., n, where n, p0, ..., pn are integers such that n ≥ 2, pi ...

متن کامل

Convexity of Sub-polygons of Convex Polygons

A convex polygon is defined as a sequence (V0, . . . , Vn−1) of points on a plane such that the union of the edges [V0, V1], . . . , [Vn−2, Vn−1], [Vn−1, V0] coincides with the boundary of the convex hull of the set of vertices {V0, . . . , Vn−1}. It is proved that all sub-polygons of any convex polygon with distinct vertices are convex. It is also proved that, if all sub-(n − 1)-gons of an n-g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2013

ISSN: 0166-218X

DOI: 10.1016/j.dam.2012.12.020