Dimension of harmonic measures in hyperbolic spaces
نویسندگان
چکیده
منابع مشابه
On characterizations of hyperbolic harmonic Bloch and Besov spaces
We define hyperbolic harmonic $omega$-$alpha$-Bloch space $mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and characterize it in terms of $$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}},$$ where $0leq gammaleq 1$. Similar results are extended to little $omega$-$alpha$-Bloch and Besov spaces. These obtained...
متن کاملDimension and Product Structure of Hyperbolic Measures
We prove that every hyperbolic measure invariant under a C1+α diffeomorphism of a smooth Riemannian manifold possesses asymptotically “almost” local product structure, i.e., its density can be approximated by the product of the densities on stable and unstable manifolds up to small exponentials. This has not been known even for measures supported on locally maximal hyperbolic sets. Using this p...
متن کاملOn pointwise dimension of non-hyperbolic measures
We construct a diffeomorphism preserving a non-hyperbolic measure whose pointwise dimension does not exist almost everywhere. In the one-dimensional case we also show that such diffeomorphisms are typical in certain situations.
متن کاملMeasures of Maximal Dimension for Hyperbolic Diffeomorphisms
We establish the existence of ergodic measures of maximal Hausdorff dimension for hyperbolic sets of surface diffeomorphisms. This is a dimension-theoretical version of the existence of ergodic measures of maximal entropy. The crucial difference is that while the entropy map is upper-semicontinuous, the map ν 7→ dimH ν is neither uppersemicontinuous nor lower-semicontinuous. This forces us to d...
متن کاملHarmonic Maps between 3 - Dimensional Hyperbolic Spaces
We prove that a quasiconformal map of the sphere S admits a harmonic quasi-isometric extension to the hyperbolic space H, thus confirming the well known Schoen Conjecture in dimension 3.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 2017
ISSN: 0143-3857,1469-4417
DOI: 10.1017/etds.2017.23