Dimension reduced kernel estimation for distribution function with incomplete data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Kernel estimation of multivariate cumulative distribution function

A smooth kernel estimator is proposed for multivariate cumulative distribution functions (cdf), extending the work of Yamato [H. Yamato, Uniform convergence of an estimator of a distribution function, Bull. Math. Statist. 15 (1973), pp. 69–78.] on univariate distribution function estimation. Under assumptions of strict stationarity and geometrically strong mixing, we establish that the proposed...

متن کامل

Kernel Estimation of Distribution Functions and Quantiles with Missing Data

A distribution-free imputation procedure based on nonparametric kernel regression is proposed to estimate the distribution function and quantiles of a random variable that is incompletely observed. Assuming the baseline missing-at-random model for nonrespondence, we discuss consistent estimation via estimating the conditional distribution by the kernel method. A strong uniform convergence rate ...

متن کامل

Generalized RBF kernel for incomplete data

We construct genRBF kernel, which generalizes the classical Gaussian RBF kernel to the case of incomplete data. We model the uncertainty contained in missing attributes making use of data distribution and associate every point with a conditional probability density function. This allows to embed incomplete data into the function space and to define a kernel between two missing data points based...

متن کامل

Kernel Estimation of Rate Function for Recurrent Event Data.

Recurrent event data are largely characterized by the rate function but smoothing techniques for estimating the rate function have never been rigorously developed or studied in statistical literature. This paper considers the moment and least squares methods for estimating the rate function from recurrent event data. With an independent censoring assumption on the recurrent event process, we st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Planning and Inference

سال: 2011

ISSN: 0378-3758

DOI: 10.1016/j.jspi.2011.03.030