Dimensional reduction and quiver bundles
نویسندگان
چکیده
منابع مشابه
Homological algebra of quiver bundles
The category of representations of a finite quiver in the category of sheaves of modules on a ringed space is abelian. We show that this category has enough injectives by constructing an explicit injective resolution. From this resolution we deduce a long exact sequence relating the Ext groups in these two categories. We also show that under some hypotheses, the Ext groups are isomorphic to cer...
متن کاملDimensional Reduction and Vacuum Structure of Quiver Gauge Theory
We describe the structure of the vacuum states of quiver gauge theories obtained via dimensional reduction over homogeneous spaces, in the explicit example of SU(3)-equivariant dimensional reduction of Yang-Mills-Dirac theory on manifolds of the form M × CP . We pay particular attention to the role of topology of background gauge fields on the internal coset spaces, in this case U(1) magnetic m...
متن کاملHomological algebra of twisted quiver bundles
Several important cases of vector bundles with extra structure (such as Higgs bundles and triples) may be regarded as examples of twisted representations of a finite quiver in the category of sheaves of modules on a variety/manifold/ringed space. We show that the category of such representations is an abelian category with enough injectives by constructing an explicit injective resolution. Usin...
متن کاملQuiver Varieties and Finite Dimensional Representations of Quantum Affine Algebras
Introduction 145 1. Quantum affine algebra 150 2. Quiver variety 155 3. Stratification of M0 163 4. Fixed point subvariety 167 5. Hecke correspondence and induction of quiver varieties 169 6. Equivariant K-theory 174 7. Freeness 178 8. Convolution 185 9. A homomorphism Uq(Lg)→ KGw×C ∗ (Z(w))⊗Z[q,q−1] Q(q) 192 10. Relations (I) 194 11. Relations (II) 202 12. Integral structure 214 13. Standard m...
متن کاملSingular Poisson Reduction of Cotangent Bundles
We consider the Poisson reduced space (T Q)/K with respect to a cotangent lifted action. It is assumed that K is a compact Lie group which acts by isometries on the Riemannian manifold Q and that the action on Q is of single isotropy type. Realizing (T ∗Q)/K as a Weinstein space we determine the induced Poisson structure and its symplectic leaves. We thus extend the Weinstein construction for p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)
سال: 2003
ISSN: 0075-4102,1435-5345
DOI: 10.1515/crll.2003.021