Dimensionality reduction for point feature SLAM problems with spherical covariance matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionality reduction for point feature SLAM problems with spherical covariance matrices

The main contribution of this paper is the dimensionality reduction for multiple-step 2D point feature based Simultaneous Localization and Mapping (SLAM), which is an extension of our previous work on one-step SLAM (Wang, Huang, Frese & Dissanayake 2013). It has been proved that SLAM with multiple robot poses and a number of point feature positions as variables is equivalent to an optimization ...

متن کامل

The nonlinearity structure of point feature SLAM problems with spherical covariance matrices

This paper proves that the optimization problem of one-step point feature Simultaneous Localization and Mapping (SLAM) is equivalent to a nonlinear optimization problem of a single variable when the associated uncertainties can be described using spherical covariance matrices. Furthermore, it is proven that this optimization problem has at most two minima. The necessary and sufficient condition...

متن کامل

The Structure of Nonlinearity for Point Feature SLAM Problems withSpherical Covariance Matrices

This paper proves that the optimization problem of one-step point feature Simultaneous Localization and Mapping (SLAM) is equivalent to a nonlinear optimization problem of a single variable when the associated uncertainties can be described using spherical covariance matrices. Furthermore, it is proven that this optimization problem has at most two minima. The necessary and sufficient condition...

متن کامل

Dimensionality Reduction with Spherical Constraints

“Curse of dimensionality” has been a significant obstacle to solving many problems. One way to avoid this obstacle is to use dimensionality reduction methods to reduce the dimension of the data while preserving the properties of the data. Reader is referred to [Saul, 2005, Fodor, 2002] for a detailed review of these dimensionality reduction methods. Almost all of these dimensionality reduction ...

متن کامل

Dimensionality Reduction for Sparse and Structured Matrices

Dimensionality reduction has become a critical tool for quickly solving massive matrix problems. Especially in modern data analysis and machine learning applications, an overabundance of data features or examples can make it impossible to apply standard algorithms efficiently. To address this issue, it is often possible to distill data to a much smaller set of informative features or examples, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Automatica

سال: 2015

ISSN: 0005-1098

DOI: 10.1016/j.automatica.2014.10.114