Dimensions of triangulated categories via Koszul objects
نویسندگان
چکیده
منابع مشابه
Dimensions of Triangulated Categories via Koszul Objects
Lower bounds for the dimension of a triangulated category are provided. These bounds are applied to stable derived categories of Artin algebras and of commutative complete intersection local rings. As a consequence, one obtains bounds for the representation dimensions of certain Artin algebras.
متن کاملObjects in Triangulated Categories
We introduce the Calabi-Yau (CY) objects in a Hom-finite Krull-Schmidt triangulated k-category, and notice that the structure of the minimal, consequently all the CY objects, can be described. The relation between indecomposable CY objects and Auslander-Reiten triangles is provided. Finally we classify all the CY modules of selfinjective Nakayama algebras, determining this way the self-injectiv...
متن کاملStrongly copure projective objects in triangulated categories
In this paper, we introduce and investigate the notions of ξ-strongly copure projective objects in a triangulated category. This extends Asadollahi’s notion of ξ-Gorenstein projective objects. Then we study the ξ-strongly copure projective dimension and investigate the existence of ξ-strongly copure projective precover.
متن کاملOn the Existence of Cluster Tilting Objects in Triangulated Categories
We show that in a triangulated category, the existence of a cluster tilting object often implies that the homomorphism groups are bounded in size. This holds for the stable module category of a selfinjective algebra, and as a corollary we recover a theorem of Erdmann and Holm. We then apply our result to Calabi-Yau triangulated categories, in particular stable categories of maximal Cohen-Macaul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2009
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-009-0545-4