Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains
نویسندگان
چکیده
منابع مشابه
Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains
The Chemical Master Equation (CME) is a cornerstone of stochastic analysis and simulation of models of biochemical reaction networks. Yet direct solutions of the CME have remained elusive. Although several approaches overcome the infinite dimensional nature of the CME through projections or other means, a common feature of proposed approaches is their susceptibility to the curse of dimensionali...
متن کاملAccurate Chemical Master Equation Solution Using Multi-Finite Buffers
The discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multi-scale nature of many networks where reaction rates have large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurat...
متن کاملHybrid Stochastic-Deterministic Solution of the Chemical Master Equation
The chemical master equation (CME) is the fundamental evolution equation of the stochastic description of biochemical reaction kinetics. In most applications it is impossible to solve the CME directly due to its high dimensionality. Instead indirect approaches based on realizations of the underlying Markov jump process are used such as the stochastic simulation algorithm (SSA). In the SSA, howe...
متن کاملDelay chemical master equation: direct and closed-form solutions
The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS Computational Biology
سال: 2014
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1003359