Direct summand conjecture and descent for flatness
نویسندگان
چکیده
منابع مشابه
Heitmann’s Proof of the Direct Summand Conjecture in Dimension 3
We describe the main ideas of Ray Heitmann’s proof of the Direct Summand Conjecture in dimension 3 for a ring of mixed characteristic [1]. In the first section we describe the main methods which are used and prove the necessary lemmas. In the second section we prove the main result of Heitmann’s paper. Finally, in the third section we give a proof of the Canonical Element Conjecture using this ...
متن کاملGeneric Flatness and the Jacobson Conjecture
A result of Artin, Small, and Zhang is used to show that a noetherian algebra over a commutative, noetherian Jacobson ring will be Jacobson if the algebra possesses a locally finite, noetherian associated graded ring. This result is extended to show that if an algebra over a commutative noetherian ring has a locally finite, noetherian associated graded ring, then the intersection of the powers ...
متن کاملHeitmann ’ S Proof of the Direct Summand
We describe the main ideas of Ray Heitmann’s proof of the Direct Summand Conjecture in dimension 3 for a ring of mixed characteristic [1]. In the first section we describe the main methods which are used and prove the necessary lemmas. In the second section we prove the main result of Heitmann’s paper. Finally, in the third section we give a proof of the Canonical Element Conjecture using this ...
متن کاملOn descent for coalgebras and type transformations
We find a criterion for a morphism of coalgebras over a Barr-exact category to be effective descent and determine (effective) descent morphisms for coalgebras over toposes in some cases. Also, we study some exactness properties of endofunctors of arbitrary categories in connection with natural transformations between them as well as those of functors that these transformations induce between co...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1996
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-96-03270-4