Dirichlet Average of Generalized Miller-Ross Function and Fractional Derivative
نویسندگان
چکیده
منابع مشابه
ON GENERALIZED k-FRACTIONAL DERIVATIVE OPERATOR
The main objective of this paper is to introduce k-fractional derivative operator by using the definition of k-beta function. We establish some results related to the newly defined fractional operator such as Mellin transform and relations to khypergeometric and k-Appell’s functions. Also, we investigate the k-fractional derivative of k-Mittag-Leffler and Wright hypergeometric functions.
متن کاملGeneralized Fractional Derivative Anisotropic Viscoelastic Characterization
Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, ar...
متن کاملFractional Derivative as Fractional Power of Derivative
Definitions of fractional derivatives as fractional powers of derivative operators are suggested. The Taylor series and Fourier series are used to define fractional power of self-adjoint derivative operator. The Fourier integrals and Weyl quantization procedure are applied to derive the definition of fractional derivative operator. Fractional generalization of concept of stability is considered.
متن کاملOn certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملFractional Calculus of the Generalized Wright Function
The paper is devoted to the study of the fractional calculus of the generalized Wright function pΨq(z) defined for z ∈ C, complex ai, bj ∈ C and real αi, βj ∈ R (i = 1, 2, · · · p; j = 1, 2, · · · , q) by the series
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Turkish Journal of Analysis and Number Theory
سال: 2016
ISSN: 2333-1100
DOI: 10.12691/tjant-3-1-7