Dirichlet to Neumann operator on differential forms
نویسندگان
چکیده
منابع مشابه
Dirichlet to Neumann Operator on Differential Forms
We define the Dirichlet to Neumann operator on exterior differential forms for a compact Riemannian manifold with boundary and prove that the real additive cohomology structure of the manifold is determined by the DN operator. In particular, an explicit formula is obtained which expresses Betti numbers of the manifold through the DN operator. We express also the Hilbert transform through the DN...
متن کاملThe Dirichlet to Neumann mapping for harmonic differential forms
We show that the full symbol of the Dirichlet to Neumann map of the k-form Laplace’s equation on a Riemannian manifold (of dimension greater than 2) with boundary determines the full Taylor series of the metric at the boundary. This extends the result of Lee and Uhlmann for the case k = 0. The proof avoids the computation of the full symbol by using the calculus of pseudo-differential operators...
متن کاملThe Dirichlet-to-Neumann operator on rough domains
Article history: Received 6 May 2010 Revised 13 March 2011 Available online 22 July 2011 MSC: 46E35 47A07
متن کاملThe Libera operator on Dirichlet spaces
In this paper, we consider the boundedness of the Libera operator on Dirichlet spaces in terms of the Schur test. Moreover, we get its point spectrum and norm.
متن کاملRemarks on the Structure of Dirichlet Forms on Standard Forms of von Neumann Algebras
For a von Neumann algebra M acting on a Hilbert space H with a cyclic and separating vector ξ0, we investigate the structure of Dirichlet forms on the natural standard form associated with the pair (M, ξ0). For a general Lindblad type generator L of a conservative quantum dynamical semigroup on M, we give sufficient conditions so that the operator H induced by L via the symmetric embedding of M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin des Sciences Mathématiques
سال: 2008
ISSN: 0007-4497
DOI: 10.1016/j.bulsci.2006.11.003