Discriminative Multiple Instance Hyperspectral Target Characterization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Instance Hyperspectral Target Characterization

In this paper, two methods for multiple instance target characterization, MI-SMF and MI-ACE, are presented. MISMF and MI-ACE estimate a discriminative target signature from imprecisely-labeled and mixed training data. In many applications, such as sub-pixel target detection in remotely-sensed hyperspectral imagery, accurate pixel-level labels on training data is often unavailable and infeasible...

متن کامل

Multiple Instance Hybrid Estimator for Hyperspectral Target Characterization and Sub-pixel Target Detection

The Multiple Instance Hybrid Estimator for discriminative target characterization from imprecisely labeled hyperspectral data is presented. In many hyperspectral target detection problems, acquiring accurately labeled training data is difficult. Furthermore, each pixel containing target is likely to be a mixture of both target and non-target signatures (i.e., subpixel targets), making extractin...

متن کامل

Instance Influence Estimation for Hyperspectral Target Signature Characterization using Extended Functions of Multiple Instances

The Extended Functions of Multiple Instances (eFUMI) algorithm is a generalization of Multiple Instance Learning (MIL). In eFUMI, only bag level (i.e. set level) labels are needed to estimate target signatures from mixed data. The training bags in eFUMI are labeled positive if any data point in a bag contains or represents any proportion of the target signature and are labeled as a negative bag...

متن کامل

DISCRIMINATIVE GRAPHICAL MODELS FORSPARSITY - BASED HYPERSPECTRAL TARGET DETECTION Report

The inherent discriminative capability of sparse representations has been exploited recently for hyperspectral target detection. This approach relies on the observation that the spectral signature of a pixel can be represented as a linear combination of a few training spectra drawn from both target and background classes. The sparse representation corresponding to a given test spectrum captures...

متن کامل

DISCRIMINATIVE GRAPHICAL MODELS FORSPARSITY - BASED HYPERSPECTRAL TARGET DETECTION Report Title

The inherent discriminative capability of sparse representations has been exploited recently for hyperspectral target detection. This approach relies on the observation that the spectral signature of a pixel can be represented as a linear combination of a few training spectra drawn from both target and background classes. The sparse representation corresponding to a given test spectrum captures...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence

سال: 2018

ISSN: 0162-8828,2160-9292,1939-3539

DOI: 10.1109/tpami.2017.2756632