Discriminative Optimization: Theory and Applications to Computer Vision
نویسندگان
چکیده
منابع مشابه
Discriminative Optimization: Theory and Applications to Computer Vision Problems
Many computer vision problems are formulated as the optimization of a cost function. This approach faces two main challenges: (i) designing a cost function with a local optimum at an acceptable solution, and (ii) developing an efficient numerical method to search for one (or multiple) of these local optima. While designing such functions is feasible in the noiseless case, the stability and loca...
متن کاملRobust Computer Vision ROBUST COMPUTER VISION Theory and Applications
non-real) objects: Plane geometric forms, solid geometric forms, and projected forms. The first class is the “real" class consisting of objects from the real world. The second class are representations of real objects. The third class are abstractions that can be represented using symbols but do not correspond to real objects (because they have no corresponding stimulus in the real world). Marr...
متن کاملRobust Computer Vision: Theory and Applications
Preface Computer vision is the enterprise of automating and integrating a wide range of processes and representations used for vision perception. It includes many techniques that are useful by themselves, such as image processing (transforming, encoding, and transmitting images) and statistical pattern classification (statistical decision theory applied to general patterns, visual or otherwise)...
متن کاملSemi-supervised discriminative common vector method for computer vision applications
We introduce a new algorithm for distance metric learning which uses pairwise similarity (equivalence) and dissimilarity constraints. The method is adapted to the high-dimensional feature spaces that occur in many computer vision applications. It first projects the data onto the subspace orthogonal to the linear span of the difference vectors of the similar sample pairs. Similar samples thus ha...
متن کاملPseudo-Boolean Optimization: Theory and Applications in Vision
Many problems in computer vision, such as stereo, segmentation and denoising can be formulated as pseudo-boolean optimization problems. Over the last decade, graphs cuts have become a standard tool for solving such problems. The last couple of years have seen a great advancement in the methods used to minimize pseudoboolean functions of higher order than quadratic. In this paper, we give an ove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2019
ISSN: 0162-8828,2160-9292,1939-3539
DOI: 10.1109/tpami.2018.2826536