Distance bounds for prescribed multiple eigenvalues of matrix polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the distance from a matrix polynomial to matrix polynomials with two prescribed eigenvalues

consider an n × n matrix polynomial p(λ). a spectral norm distance from p(λ) to the set of n × n matrix polynomials that havea given scalar µ ∈ c as a multiple eigenvalue was introducedand obtained by papathanasiou and psarrakos. they computedlower and upper bounds for this distance, constructing an associated perturbation of p(λ). in this paper, we extend this resultto the case of two given di...

متن کامل

Bounds for eigenvalues of matrix polynomials

Upper and lower bounds are derived for the absolute values of the eigenvalues of a matrix polynomial (or λ-matrix). The bounds are based on norms of the coefficient matrices and involve the inverses of the leading and trailing coefficient matrices. They generalize various existing bounds for scalar polynomials and single matrices. A variety of tools are used in the derivations, including block ...

متن کامل

The distance from a matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue

For a matrix polynomial P (λ) and a given complex number μ, we introduce a (spectral norm) distance from P (λ) to the matrix polynomials that have μ as an eigenvalue of geometric multiplicity at least κ, and a distance from P (λ) to the matrix polynomials that have μ as a multiple eigenvalue. Then we compute the first distance and obtain bounds for the second one, constructing associated pertur...

متن کامل

Matrix polynomials with specified eigenvalues

Article history: Received 25 January 2014 Accepted 9 October 2014 Available online 5 November 2014 Submitted by F. Dopico MSC: 65F15 65F18 47A56

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2012

ISSN: 0024-3795

DOI: 10.1016/j.laa.2012.01.003